
OCTOBER 2019
KENJI IIJIMA

ARM (Advanced RISC Machine)

Basic - Quick Start to Understand

Objective/Disclaimer

Goal:

• {For author} To build basic understanding of ARM architecture and technology to ramp up as FAE to
support on behalf of ARM based SOC vendors from October 2019

• {To reader} To have basic ideas of key ARM technology/functionality with product portfolio

Disclaimer:

• This is non-NDA base (Readers may distribute to anyone without consensus of the author).

• The author may publish it to any social media or specific individuals to enhance his/her publicity.

• The author has no responsibility of correctness of documents despite the best effort to make as
precise as possible.

• This document does not make readers know whole things about ARM architecture. For further
understanding, recommended to read ARM Architecture Reference Manual, etc

Prerequisite background knowledge

• Basic understanding of microprocessor system

• Super basic concept of assembly code

Potential items to add if this document is upgraded:

• ARM instruction sets

• More details of ARM microarchitecture

• List of evolutions of ARM over generation (i.e. upgraded features of Cortex-A72 from A53)

• Introduction of some vendors ARM based product (i.e. Qualcomm, NXP, ST Micro, Microchip etc)

Contents

ARM Overview

ARM Architecture Basic

ARM Key technologies

ARM Misc

Contents

ARM Overview

• Corporate Overview

• Guidance to understand product portfolio

ARM Architecture Basic

ARM Key technologies

ARM Misc

ARM Corporate Overview

ARM = Advanced RISC Machine (Previously Acorn RISC Machine)

ARM Holdings

• Founded in 1990

• HQ: Cambridge UK

• Key persons: Chairman = Masayoshi Son (Softbank), CEO = Simon Segars

ARM deliverable in the market

• License of microprocessor/GPU designs

• Software Dev Tool

3 types of licenses

1. Core: Taking IP of architecture to build into their SoC

2. Built-on Cortex Tech license (BoC): Partner with ARM to modify designs together

3. Architectural license: Take design to re-architecture to their own based on ARM instruction set

4. Mali license: GPU design

ARM Architecture Categories

Classic = Fundamental architectures a

• When there was no differentiation between M/R/A

• Base functions for M/R/A

Cortex-M: Microcontroller profile

Cortext-R: Real-time profile

Cortex-A: Application profile

“Classic” is still reflected after ARMv6~

Classic

Cortex-M Cortex-R Cortex-A

ARMv1 – ARMv6

ARMv6~
• ~V8.5 planned(as June 2019)
• Vx-Z means version x with Z
(Z = M, R or A)

ARM Version Matrix (Copied from Wiki)

ARM Evolution – Classic (~v5TE)

Version
(Architecture)

Core
(ARM)

Core
(3rd party)

Key feature
{Previous version +, from v2}

ARMv1 ARM1 1983-1985
26 bit addressing

ARMv2 ARM2 32 bit arithmetic instruction output
Co-processor support

ARMv2a ARM2aS, ARM3 On chip cache
Load & Store instructions

ARMv3 ARM6, ARM600.. 1990- (First design since ARM Limited established)
MMU, Write-buffer
32 bit addressing mode, CPSR, SPSR

ARMv3M ARM7, ARM700 64 bit signed/unsigned arithmetic instruction

ARMv4 StrongARM, ARM8 Half-word signed/unsigned Load/Store
Privilege Mode

ARMv4T ARM7TDMI, ARM710 Thumb instruction

ARMv5T ARM9-S BLX, CLZ, BRK instructions

ARM5TE ARM10TDMI, ARM1020E XScale DSP instructions

ARM Architecture Categories – After v6

Note:

With evolution of ARM, this table gets less precise.

This is only benchmark of classifications between M/R/A

Cortex-M Cortex-R Cortex-A

Profile Microcontroller (MCU) Real-Time Application Processor

Example usage

Core controller in FPGA
Smart Meter
PLC/Sequencer

Hard Disk Controller
Network Equipment
Printer
Co-processor inside Application SOC

Smart Phone/Tablet
Computer
Set-Top-Box
Cloud/Edge computing

Mission

Simple & low cost

Peripherals in same chip

Reduced latency for high priority task

Exclusive HW resource for time critical

Feature rich & High performance

Media processing with large data
processing

Power Management → Efficiency

Features

Limited Instruction sets

3~ stages of pipelines

(from M4) SIMD/DSP/FPU

Thumb2 available

Addition to Cortex-M
8 – 11 stages of pipelines

Interrupt vector

Availability of exclusive bus for reduced
latency
(i.e. LLPP, low latency peripheral port)
→ Direct read/write to IO
(otherwise, read →modify → write)

Out-of-Order

Muti-core with lock-step
(core independent, own program, own
bus IF, Interrupt)

Addition to Cortex-R
Widest range of instruction sets
(NEON 128b, VP, etc)

11 stages or deeper pipelines

Muti-core with big.Little→ DynamIQ

64bit (v8~) → >4GB of RAM

Virtualization

MMU

*Note: Cortex-R’s lock-step is not
suitable for application as it loses
flexibility of dynamic core resource
allocation with sacrifice of real-time

ARM Class Matrix with Technology Milestone
A

R
M

v8
-A

A
R

M
v7

-A
A

R
M

v7
-R

A
R

M
v7

-M
A

R
M

v6
-M

A
A

ar
ch

6
4

(6
4

 b
it

)
3

2
 b

it

V8.1-8.5 -A A55/75/76

SI
M

D

Tr
u

st
 Z

o
n

e

Th
u

m
b

-2

N
EO

N
 –

A
d

va
n

ce
 S

IM
D

V
FP

 v
3

/v
4

VFP v2

Jazelle

TI OMAP3
Apple Swift, Renesas R-Car2

Qualcomm Kryo
nVidia Denver, Renesas R-Car3
NXP iMX8

Nvidia Carmel
Apple Vortex

Qualcomm Snapdragon 200
Broadcom BCM2836, Atmel SAMA5
Apple A5, Freesclae iMX6

TI TMS570

NXP LPC11xx,

Media Tek Helio x30

Altera Cyclone III,

TI Stellaris, Atmel AT91SAM3

b
ig

.L
it

tl
e

DynamIQ

Guidance to recognize features of ARM processor

Contents

ARM Overview

ARM Architecture Basic
• Architecture Overview
• General Registers in ARM
• Processor Mode and Privilege Level
• ARM Co-processor

ARM Key technologies

ARM Misc

ARM Architecture Block – High Level

2 main segments split by bridge

• CPU core/memory: Run by AHB or ASB

• Peripheral IOs: Run by APB

CPU buses: Run with Advanced Microcontroller Bus Arch (AMBA)

• Advanced High Performance Bus (AHB) or ASB (Advanced System Bus)
– Full Duplex with higher bandwidth

• Advanced Peripheral Bus
– Lower BW

– Focusing on memory/IO access

– Simpler signal format

ARM CPU Core

Cache

JTAG

Memory Controller
(DRAM)

BridgeAHB/ASB APB

Legacy IO Controller
(I2C, UART, LPC, PWM etc)

HSS IO Controller
(USB, SATA, PCI-Ex, Eth etc)

System Controller
(Reset Ctrl, WDT, Power Mgt etc)

Peripheral Data
Controller (DMA)

ARM Register Architecture

15 Registers

CPSR (Count Program Status Register)

SPSR (Saving program status register)

Each line with 32 bits

R0-R7: GPR for all CPU modes

R8-R12: User mode and FIQ mode use

R13/14: All modes may use

R15* program counter (PC)

In user mode:

R13 = stack point (sp) register

• Base address in memory where stack points starts
in case of jumping to sub-routine

R14 = Link Register (lr)

• Storing return address of PC that it moves back at
end of sub-routine

Accessible from user mode
(Program user space)
Only system mode (non-user mode)

SPSR is used to store current CPSR value when exception happens and CPU gets into modes other than usr/sys
During exception modes, CPSR used to handle these modes operation
When returning to usr/sys mode, CPSR polls from SPSR to recover the original status

ARM Register – Looking from another angle

System Mode: Uses r0 – r12 & r13 (SP), r14(lr), r15 (PC), same as usr mode

FIQ mode: r0-r7 and r15 for user mode & r8 –r14 used as registers for FIQ

IRQ/SVC/UND/ABT mode: r13 and r14 used as registers for these modes

SPSR used in exception/privilege modes other than usr to save CPSR values

For HYP: PC stored in ELR_hyp instead of r14.

Also known as W Register

Count Program Status Register (CPSR)

Mode bits [4:0]:

When NOT “user(b0)”/”system(31b)” ➔ Exception mode ➔Write current CPSR value to SPSR

Additions not shown in diagram:

Mode bits: Hypervisor mode [0b11010], Monitor mode [0b10110]

{New] Bit 9, “E”: Endianness. If 0 → Little endian, else big endian

[ARMv8.0~] Bit23 = SSBS (Speculative Store Bypass Safe)

[ARMv8.1~] Bit22 = PAN (Privileged Access Never)

[ARMv8.4~] Bit21 = DIT (Data Independent Timing)

M[4] is always 1
If M[4] =0 → 64 bit mode

https://developer.arm.com/docs/ddi0595/b/aarch32-system-registers/cpsr
https://developer.arm.com/docs/ddi0595/b/aarch32-system-registers/cpsr
https://developer.arm.com/docs/ddi0595/b/aarch32-system-registers/cpsr

CPU Mode of Operation – Bit[4:0] of CPSR

Mode mnemonic ARMv~ CPSR[4:0] Privilege Statement

User usr All 0b10000 EL0 Only non-privileged mode
ARM usual program execution state for most app program
When interrupted, switch to svc (privileged)

System sys V4~ 0b11111 EL1 Privileged mode but still using the same register sets as
user mode.
Introduced to overcome problem with calling multiple sub-
routines (rick of overwriting PC in r14)

Faster Interrupt
Request

fiq All 0b10001 EL2 Higher priority interrupt and can mask other INT.
7 registers (r8-r14) used to avoid pushing out of handler &
faster context switching
Can be executed only with ARM assembly

Interrupt
Request

Irq All 0b10010 EL2 General purpose interrupt (i.e. periodic timers)
Only r14 and r15 to return to main routine (usr) afterward

Supervisor Svc All 0b10011 EL2 Mode when CPU is reset or SW interrupt received

Abort Abt All 0b10111 EL2 When abort happened (i.e. unsuccessful memory data
access) → one of exception mode

Undefined und All 0b11011 EL2 When undefined instruction is given and cannot handle
→ exception occurs

Hypervisor hyp If hypervisor
supported

0b11010 EL2 When switching between guest OS kernels

Monitor monitor If security
supported

0b10110 EL3 Associated with Trusted Zone
When switching between secure and non-secure mode
Safely saving state when leaving secure space operation

ARM – Privilege Level

Privilege Level (PL) Definition {Also known as Exception Level}:

Level of access right to system and CPU resource allocated to software.

Higher number →More privilege

i.e) OS kernel has more right of configuration than application program

Type of privilege:

1. Memory privilege
– MMU controls the read/write access of memory region based on PL

2. Register Access
– Register setting is granted with PL. Some registers are not accessible with lower PL

– To indicate accessibility of PL, register names may include suffix to indicate PL, such as SCTLR_EL1

3. Instruction sets
– Some instruction sets are not granted to lower PL. For example, TZ is granted to specific

Previleged

Non-previleged
M

an
d

at
o

ry
 E

L
O

p
ti

o
n

al
 E

L

ARM – Privilege Level – Cont.

Hypervisor at PL2 can switch between guest OSs (PL2)

Secure State (Trust Zone)
• Most privilege level (EL3) having access to most resource etc
• APP, OS, partition running on security zone have PL3 equivalent privilege instead of EL0-2.
Non-Secure State (Blue in above diagram)
• Access only to limited (non-secure) resource (memory/register) and takes only non secure

interrupt

Trust Zone explains how transition between Non-secure and Secure is done

Note: 64 bit execution state (AArch64 App) cannot run on AArch32 kernel

ARM Co-Processor

ARM Architecture uses Co-processors for extensive functionality (Except ARM-M)
Co-Processor uses dedicated instructions {MRC, MCR} and have own registers

Access to co-processor is outside of ARM core memory map
➔ (i.e. with 32 bit) part of 4GB mapping is not used by co-processor

Example of co-processor (CP15): There are 16 co-processors in total
• CP15: For system configuration and control
• CP11: Double precision floating-point
• CP10: Single-precision floating point

Instruction Cache

ARM Core

Data Cache

C
o

P
ro

ce
ss

o
r

(C
P

)

Write Buffer

B
u

s
In

te
rf

ac
e

U
n

it

NEON uses both

ARM CP Access Instructions

2 types of instructions to access to CP

• MRC: Reading from CP registers, MRC{ cond } coproc,# opcode1,Rd,CRn,CRm {, # opcode2 }

• MCR: Writing into CP registers, MCR{ cond } coproc,#opcode1,Rd,CRn,CRm {, # opcode2 }

Example: MRC p15,0,r0,c1,c0,0

Reading from CP15 (P15 and 0) into ARM registe @ r0 (r0). Registers to load from are C1 (config) and C0 (ID)

CP Access Instruction Structure

Parameter Contents

Cond {Optional} Conditional code

CoProc Name of co-processor which instruction is executed {For CP15, P15}

opcode1 3 bit opcode for co-processor. Mapped to CRn.
(i.e. if 0 → load from or store to co-processor)

opcode2 {Optional} 3 bit opcode for co-processor. Mapped to CRm

Rd Registers in ARM core which it is written into (MRC)/read form (MCR)

CRn Co-processor register

CRm Co-processor register

CP Example – CP15

Registered looked in the order of

1. CRn: First level co-processorregister

2. Opcode 1

3. CRm: Second level co-processor

4. Opcode2

Register (CRn) Parameter

0 ID register

1 Config

2 Cache Control

3 Write Buffer

5 Access Permit

6 Base Address & Size

7 Cache Op

9 Cache Lock

15 Test

CoProc = P15

Name Type Default Value Description (Sorry in Japanese)

Contents
ARM Overview

ARM Architecture Basic

ARM Key technologies
• AArch64 (64 bit mode)
• VFP
• ARM SIMD & NEON
• ARM Virtualization
• TEE and ARM Trusted Zone
• Thumb Instruction
• Jazelle
• BigLittle & DynamIQ

ARM Misc

ARM Key Technologies Evolutions

Main Function
Compatible with

ARMv7-A

Contents:
• Scaler FP
(SP or DP)
• Adv SIMD

(SP FP)

Contents:
• Scaler FP
(SP or DP)
• Adv SIMD

(SP+DP FP)

Even more advanced Thum-2

Evolution for Cortex-R

Evolution for Cortex-A

Evolution for all ARM

Virtualization

Carried out to later versions

Introduced in this version

Big Little

DynamIQ

http://www.google.co.jp/url?sa=i&source=images&cd=&cad=rja&uact=8&ved=0CAgQjRw&url=http://www.arm.com/ja/products/processors/instruction-set-architectures/index.php&ei=F4-YVNKgGojjywPrj4CQDA&psig=AFQjCNF9t6tP8s8duoZTbpVa1n5DtatVXQ&ust=1419370647520267

ARM 64 bit – AArch64 Overview

Available from ARMv8 (From Cortex-A57)

64 bit execution state (A64 instructions)

Wider memory access ➔ AArch32 limited to 4GB

To do AArch64, mode switch is necessary

(Cannot execute A32 or T32 instructions)

Registers are extended to 64 bit [X-registers]

Can access to both 64bit and 32bit registers

AArch32 cannot use X-Register[63:32] ➔ stuffed with 0

MMU:

Virtual address up to 48 bits (8bits for tag and 40 bits for TBR)

ARM – AArch64 Registers (GPR)

GPR Allocation {ARMv8~}:

AArch32 Mode:

• Use W[31:0] == X[31:0]

• X[63:32] stuffed with 0

AArch64 Mode:

• Use X[64:0]

AArch64 handler code can request access to AArch32
registers with mapping to 32b GPR

Until ARMv7, GPR called R[31:0]

Convention of X Registers

• Usually use X0-X18 and X30

• Each has 64bits

Exception Registers

• SP exists in all levels to indicate the base address
of to store in case of migrating to higher EL

• Mapping with 64 → 32 shift

– SPSR_svc maps to SPSR_EL1.

– SPSR_hyp maps to SPSR_EL2.

– ELR_hyp maps to ELR_EL2.

GPR allocation between AARch64/32(ARMv8~)

Convention of AArch64 GPR (X Register)

Bank Registers for Exception/Privilege states in AArch64

ARM – AArch64 Instructions

Advancement with AArch 64 from 32:

• 64 bit wide integer registers access

• 64bit data operation

• 64 bit sized addressing to memory

In case of A32/T32 → AArch32 & backward compatible to ~ARMv7

• Note: New 32b instructions introduced in ARMv8 cannot be carried back to ARMv7

Switching between AArch32 (A32/T32) and AArch64 (A64)

64 bit instructions

To do 64 bit operation, CPU needs to be in A64 state
PState/CPSR[4] is set to 0 {In AArch32, always 1}

In A64 state, 32 bit instruction
cannot be executed. So need to
switch to A32 or T32

T32: Thumb-2
Mix of 16 and 32 bits instructions

ARM VFP (Vector Floating Point) Instructions

FPU co-processor extension to ARM (~ARMv7)

**No more co-processor from ARMv8 {Likewise to Intel ® Pentium??}

VFP is for short vector mode → Performance not as good as SIMD

• VFP benefit: when dealing with only single FP
– CPI is shorter → faster output

– Smaller code size

Version #FPU Regs/bit ARM version Comment

VFPv2 16/64 v5TEJ, v6

VFPv3/3-D32 32/64 v7 (A8, A9) Mostly backward compatible with VFPv2

VFPv3-D16 16/64 R4, R5 and Tegra 2 (A9)

VFPv3-F16 Half-precision (16b)

VFPv4/4-D32 32/64 v7(A12, A15)
A7 if used with NEON

VFPv4-D16 16/64 A5, A7 (not used with NEON)

VFPv5-D16-M M7 (if single&double precision option available)

VFP is implemented based on VFP registers such as , MVFR0 {A32}, MVFR0_EL1{A64}
(Details skipped in this document but available in ARM Ref Manual)

ARM VFP Instruction Example

Syntax Definition of Definition Coding Example

VABS Floating-point absolute value VABS{cond}.F32 Sd, Sm
d = destination, m = operand
s → single word, if d → double word (64b)
F32 → FP with 32 bits (if double word →F64)

VADD Floating-point add VADD{cond}.F32 {Sd}, Sn, Sm
➔ Value @ d = value @ n + value @ m all with 32b FP

VSUB Floating-point subtract VSUB{cond}.F32 {Sd}, Sn, Sm

VCMP Floating-point compare VCMP{cond}.F32 Sd, Sm
Compare values at d and m having 32bit
m can be replaced with immediate #A, A = integer?

VCVT Convert between integer to FP VCVT{cond}.typeQd, Qm {, #fbits}
Type: i.e. S32.F32 → 32b FP to 32b integer

VDIV Floating-point divide VDIV{cond}.F32 {Sd}, Sn, Sm
➔ Value @ d = value @ n / value @ m, all with 32b FP

VMUL Floating-point multiply VMUL{cond}.F32 {Sd,} Sn, Sm
➔With word (32b) value @ d = value @ n * value @ m

VMLA Floating-point multiply accumulate VMLA{cond}.datatype {Qd}, Qn, Qm
➔With q-word (128b) value @ d = value @ n * value @ m
Data type: I8, I16, I32 or F32 → for VFP must be F32

VNEG Floating-point negate VNEG{cond}.F64 Dd, Dm
➔ Swapping sign bit of value @ m and load its value to d

VMLS Floating-point multiply subtract VMLS{cond}.F32 Sd, Sn, Sm
➔ New value @d = value @n * value @m – current value @d

ARM SIMD Instructions - Overview

SISD vs SIMD
SISD:

• Single operand (max 2) + destination register per instruction line

• Need multiple instructions to generate chains of parallel data ➔ longer
latency

SIMD:

• Multiple operands in a single instructions

• Capable of processing array of data at once

– Operand size: 8/16/32/64 bits (*64b only for AArch64)

Efficient use of register space

– i.e. 128 bit space available vs operand has only 16 bits

SISD Instruction Example (Left)
• Need 4 single instructions to get 4 output series (w0, w1, w2, w3)

• Need 4 x CPI latency + possible additional instructions to integrate them

SIMD Instruction Example (Left)
• Only single instruction needed, instead of 4, to update in register at v10

containing 4 arrays of data

– v10 corresponds to integral of w0-w3 in SID case

• SIMD instruction is such to add each chunk of operands from both sides

• Definitely shorter latency till getting expected output (SIMD CPI would be
longer than SISD but definitely faster than having multiple)

SISD vs SIMD

SISD Instruction Example

SIMD Instruction Example

ARM SIMD Instructions – Use Case Example

ARM SIMD

• SIMD: ARMv6~ (8/16/32/*64 bit) *AArch64 only

• NEON: ARMv7 A/*R ~. ~128 bits *Cortex-R53

• Helium* ARMv8.1-M

ARM SIMD function - Example

• Math Function: vector and matrix

• Signal Processing: FFT, FIR, IIR

• Image Processing: image resize/rotate

Replacement and offload of GPU/DSP engines (If high performance not required)

ARM SIMD vs NEON

ARM SIMD

ARMv6~

Packing 8 or 16 bit into 32 bit GPR

Left example;

• UADD8 R0, R1, R2

• UADD8 → 8 bit unsigned, thus 32/8 = 4 ways packed
into GPRs, R1 and R2

• Result placed into R0

NEON

ARMv7 ~, as optional SIMD extension to ARMv7-A/R

Data Types:

• Integer: 8bit (i.e., I.8), 16 bit, 32 bit, 64 bit

• FP: 32bit (i.e. F.32)

Storing in registers, 64b D (doubleword) vector register or
128b Q (quadword) vector register

Left Example;

• VADD.I16 Q0, Q1, Q2

• VADD.I16 → 16 bit integer, thus 128/16 = 8 ways packed
into GPRs, Q1 and Q2

• Result placed into Q0

Note: If 64 bit register → D instead of Q

ARM SIMD Example (4 way 8bit integer add operarion)

NEON Example (8 way 16 bit integer add operarion)

VFP & NEON Registers

32 x 32 bit registers (S0 – S31): VFP only

32 x 64 bit registers (D0-D16): Can be shared between VFP and NEON

• VFP may use only D0 – D15

• D16-D31: exclusive for Advanced SIMD (NEON) and VFPv3

16 x 128 bit registers (Q0 – Q15): NEON only

Use of registers are up to selection of instructions (not transparent to App SW)

Virtualization/Hypervisor with ARM - Overview

Mechanism to handle virtual machines (guest
OSs) with minimum performance impact

With no virtual machine/Single OS

App

OS Kernel

Non-privileged

Privileged

With virtual machine/Gues OSs without VT

App

OS Kernel

Non-privileged

PrivilegedVMM/Hypervisor

With virtual machine/Gues OSs with VT (ARM Solution)

Non-privileged

Privileged
VMM/Hypervisor

P0

P1~

P1~

P0

P0

P1

P2

P0 = Non-privileged level
• Limited access to resource/memory
• Users has limited access
P1 = Privileged level
• Wider/full access to resource/memory
• Higher capability & performance

VMM/Hypervisor occupies privileged level
• Handling switch between guest OSs
• Resource/memory allocation to guest OSs
OS kernel pushed out to non-privileged level
Issue:
Decreased performance of OS/kernel and
applications running on top due to limited
access to resource/memory

OS Kernel

App

App

OS Kernel OS Kernel

App
Solution:
Provide another level in privileged region
Split of privileged region
• OS/kernel (P1): Full access to

resource/memory
• HV (P2): Focuses on instructions to

implement hypervisor (other privileged
tasks given to P1)

P2 @ higher priority
When needed, switch hv mode in CPSR [4:0]
→When finished, return to P1

Virtualization Extension – MMU Overview
Memory Translation with Single OS

OS/Kernel

App 0 App 1 App x

Address A Address B Address C

TLB
(Translation Look-aside Buffer)

“A” from App 0 = XXX
“B” from App 1 = ???

…….
“C” from App X = XXX
(“A” and “C” same)

DRAM

Page Table

“A” from App 0 = XXX
“B” from App 1 = ???

…….
“C” from App X = XXX
(“A” and “C” same)

Address XXX
{Data for App 0, A and App x, C)

Memory Translation with hypervisor

VMM Hypervisor

App 0

Address A Address B Address C

TLB
(Translation Look-aside Buffer)

“A” from App 0 = XXX
“B” from App 1 = ???

…….
“C” from App X = XXX
(“A” and “C” same)

DRAM

Page Table

“A” from App 0 = XXX
“B” from App 1 = ???

…….
“C” from App X = XXX
(“A” and “C” same)

Address XXX
{Data for App 0, A and App x, C)

Address search hit
Address search miss

App 1

OS/Kernel 0

App 2 App 3

OS/Kernel 1

App y App z

OS/Kernel %%

MMU

MMU

In general, memory management is in charge of VMM to access wanted data

Virtualization Extension – MMU with LPAE

Issue with general MMU

Many memory access from Apps on multiple OS expected

• App only assumes 32 bits on OS and not aware of
other guest OS and hypervisor resource

• Virtual address issues by different App or guest OS
may be mapped to same physical address

• OS not handling translation

• MMU has capacity limitation

➔ Higher risk of “Miss”

• Larger latency → Decreased performance

• Some of “missed” address could have been actually
the same as physical address as other “hit”

Solution (LPAE): 2 Stage address translation

Stage 1:

Translation from App to OS kernel

Likewise to non-hypervisor environment

Translated to address that is to be shown to VMM

If not hit, already miss → Not paged

Stage 2:

Translated from OS level address

Handled by VMM/Hypervisor

40 bits address space instead of 32 bits

➔ 256 times wider ➔ 256 times less chance of miss

➔ 256 guest OS can be accommodated

Memory Translation with Hypervisor - General

VMM Hypervisor

App 0 App 1

OS/Kernel 0

App 2 App 3

OS/Kernel 1

App y App z

OS/Kernel %%

MMU (32 bit range)

Miss

Memory Translation with Large Physical Address Extension (LPAE)
Translated by OS Translated by VMM

32b

32b

32b

40b

ARM – Trusted Zone (TZ) & Trusted Execution Environment (TEE)
Overview

Background:

• Devices are connected to internet →more threat of security breach

• Some Apps/SW are not trusted (vulnerable, malicious etc)

• Need enclosed region for protection to guarantee secure environment

Trusted Execution Environment:

• First defined by Open Mobile Terminal Platform (OMTP)

• Platform defining to isolate between secure and non-secure region

Trusted Zone:

• ARM technology to implement TEE

• Protection not only CPU and software but also other HW resource (i.e. memory, IO)

Separation of normal world (not trusted) & Secure world (trusted) Separation of HW resource between trusted and non-trusted

ARM - TZ

Non Trusted (Normal World/Non-Secure/Rich Execution Environment)

• No guarantee of security

• Limited access to CPU/HW resource

• If security process is needed, need authentication of reaching to Trusted zone

Trusted (Secured/TEE)

• Only trusted/authorized apps are admitted (i.e. crypto, key

• Full resource access admitted

Memory mapping with TZ

• If approached from REE, region reserved for TEE are blocked (paging does not map)

Example of memory map with TZ
TZ on ARM

Non Trusted Trusted Execution Environment (TEE)

ARM TZ - Implementation

Transaction between REE and TEE done with secure monitor (PL3, monitor mode)
• REE needs to have TEE driver (PL1) and TEE core at TZ interface to REE
Figure 2: REE App hits API that will activate TEE driver
Figure 3: To be admitted by TEE at secure monitor, several steps of certification steps take place
If TZ HW resource is needed (i.e. encryption), TEE API hits through library → HAL to TZ HW resource

Use Case Example: For IPSec
REE App approach to TZ with TEE API/Driver to request to encrypt payload → REE App authenticated with secure monitor → TEE approaches to HW
crypto engine at TZ to encrypt → TEE returns encrypted payload to REE → RSS App transmits data

Fig 1: TZ Transaction Overview Fig 2: API to approach from REE App to TZ

Fig 3: Example of secure monitor (certification)

TZ HW Access

ARM – Thumb Instructions - Overview

Motivations

• Older version of ARM had less than 32 bit
– For example, Super-H

– Want to carry over software know-how from previous version ARM to newer
version of ARM

• Want to save cost and power consumption
– Code size can be reduced with 30% on average comparing with just using ARM-32 bit

– Reduced code size →memory size reduction → cost down

– Simpler code → Simpler architecture → reduction of power consumption

• Sacrifice of performance is lower priority than cost
– Estimated to be degraded with 20%

Available from ARMv4T (First one = ARM7TDMI) {Intel ® Xscale also had it}

ARM family with “T” supports “thumb” feature

To do “thumb” ➔ Bit 5 of CPSR must be set

• Switch between ARM-32b and Thumb triggered with branch and exchange
(BX)

ARM – Thumb Instructions

Above Diagram shows

• Architecture of processing ARM and Thumb

• Example of converting between ARM32 and Thumb {ADD Rd Rd #8bit}

Limitations with Thumb compared to ARM-32bits

• 16bit

• Only 2 operands in a single instruction

• Only sub-set of ARM-32 bit can be translated. For other instructions, must go with ARM-32bit

C
o

n
ve

rs
io

n
 b

et
w

e
e

n
 A

R
M

-3
2

b
 a

n
d

 T
h

u
m

b

CPSR [Bit5] = 1
Selecting high or
low halfword of
register

Data In

ARM – Thumb - Register Use

With Thumb mode:

• Only R0 – R7 can be used

• Possible to stuff 2 datagrams in a single
register line, Rx, rather than just stuffing
with 0 in upper 16 bits

Use of SP for Thumb

• Unique stack mnemonics (PUSH, POP)
– Assumes the existence of a stack pointer, R13

– Equivalent to load and store instructions in
ARM state

CPSR:

Thumb status bit [bit 5] is 1

Lo
w

 (
Lo

)
R

e
gi

st
e

r
H

ig
h

 (
H

i)
 R

e
gi

st
e

r

ARM – Thumb - Benchmark

“Thumb” Saves 40% of memory space ➔ Contributing to reduction of cost and power consumption (memory)

With sacrifice of

**20% of number of instructions

(**Note: Exact performance depends on CPI of each instruction)

Instruction for benchmark:
Let r1, r2 have value and divisor.
Program produces quotient and remainder in r3 and r2

ARM-32 bit case Thumb case

Thumb2 and ThumbEE

Thumb-2: Mixed (32- and 16-bit) length instruction set

Available from ARMv6T2

With 32 bit mixing, can cover both instructions of Thumb and ARM-32b

• Except thumb2 has no conditional code for instruction

• Compensating with “IT (if-then)” instruction

– IT{x{y{z}}} {cond}  like “switch” in C

Access to full 16 registers

Thumb Execution Environment (ThumbEE)

Available from ARMv

based on Thumb, with some changes and additions to make it a better target
for dynamically generated code, that is, code compiled on the device either
shortly before or during execution.

ARM - Jazelle

Technology to let Java bytecode to be executed directly on native ARM HW

(Getting into state along side ARM and Thumb)

ARM version with “J” has Jazelle

(i.e. ARM9EJ-S and ARM7EJ-S , etc)

Available from ARMv5 (except ARMv7-M)

When Jazelle implemented, J-bit in CPSR (bit 24) must be set.

ARM – Jazelle Cont.

Motivations for Jazelle

• 80% or more Java App instructions are so simple that they can be done on HW native code (8 bit
instructions instead of 32bit~)

Benefit of Jazelle:

• 10 times performance increase for Java App than using only Java Virtual Machine (JVM)

– Only 6 stages pipelines vs 11 stages or more (Cortex-A family)

• Reduced code size → Reduction of memory size possible

– 8 bit instruction size vs 32 bit ~ if executed on ARM mode

JVM can let 80% or more Java app code to be done on Jazelle native HW

6 stages pipelines

Use “BXJ” instruction to get into Jazelle mode

big.LITTLE Technology - Overview

Amount of workload is dynamic over the time

• If using only King Kong → Job is done but consumes too much food

• If using only Mouse → Little food consumed but job may not be done

Switching between these 2 are needed for efficiency optimization

Powerful
But
Eat a lot

Weak
But
Need only little food

Workload

Time

King Kong Mouse

K

M

big.LITTLE Technology

Using right processor at appropriate time

Seamless software handover using interconnect

Significant energy saving with typical workload

big.LITTLE Technology – Mechanism & Limitation

Mechanism:
• OS handles handover between Big and Little cluster
• Synchronized and triggered by GIC (interrupt) and CCI (cache coferency)
Limitation:
• If one cluster is active the other must be in sleep
• Can never activate both clusters
• All cores in active cluster must be awake

big.Little Evolution → DynamIQ - Overview

More intelligent and dynamic computer power needed

Workload of future device will increase but not steady all times

ARM is aiming to cloud business

DynamIQ - Concept

Future Needs Trend:

• Greater processing power

• More flexibility of performance/power level tailoring

Workload

Time

Workload

Time

big.Little Case
Not optimum resource allocation

DynamIQ CASE

K

M

DynamIQ - Implementation

Enhanced scalability of performance levels

Availability of both higher and lower performance than big.Little

Enhanced energy efficiency with more performance levels availability

Each core has own L2 cache vs L2$ shared by cores in the cluster

Core assignments with DSU (DynamIQ Shared Unit) controlling whole unified cluster

Shared L3 cache to all active cores
Coherency control
Interface to accelerator (i.e. GPU)
Bridge/arbitrator to cores and peripherals

Unified cluster

Contents

ARM Overview

ARM Architecture Basic

ARM Key technologies

ARM Misc
• Bootloader System
• Device Tree
• Master Boot Record
• Tightly Coupled Memory
• MCU vs MPU

ARM Bootloader - Overview

Bootloader (BL) = Program to start OS after power-on event

• Stored at the first address to be pointed after power-on in NV flash

• When all program executed ➔ handed to OS

1. After power-on, access to first address space where start line of BL is found

2. Loading file/code in storage space inside SOC (registers, u-code etc)

3. Initializing external RAM (DRAM)  i.e. MRC

4. Loading kernel image and OS to RAM

BL completion and transition to OS

DRAM

NV Flash

Bootloader

SOC

CPU Core

eSRAM
Registers

MC

Kernel

Storage
(HDD, eMMC etc)

OS

OS

Kernel

1

2

3

4

ARM Bootloader – Overview (PBL/SBL/xBL/LK)

If SOC is simple (i.e. MCU) → Single chunk of BL is enough

If SOC is complex (i.e.MPU/CPU) → BL consists of several blocks

Bootloader program is so simple that it can access only small of data

• If whole BL process is complex enough → Split into several stage

• BL does not proceed to next stage BL unless current stage is complete

DRAM
NV Flash

Bootloader

SOC

CPU Core

eSRAM
Registers

MC

Kernel

Storage
(HDD, eMMC etc)

OS

OS

Kernel

1

2

3

4

PBL

SBL/xBL

LK

Bootload (BL) process runs with single task mode (Real Mode)

After Little Kernel (LK), ready to start multi-processing (protected mode)

• Kernel does task/resource management

Whole BL split into stages

PBL: Initialization within SOC/CPU

SBL/XBL: Initializing peripherals & Loading selected bootstrap

LK: Loading minimum set of kernel needed to run SOC operation

ARM Bootloader – PBL/SBL(XBL)/LK
Note: Taking Intel Architecture Boot case

PBL SBL/XBL LK OS Boot

Bootload Process

ARM Bootloader – Primary Boot Loader (PBL)

After power-on, CPU core access to PBL in BL (known as Master Boot Record, MBR)

PBL loads data (&u-code) to eRAM and registers within SOC

Without PBL completion, SOC is not initialized and IOs not active

(Not able to boot OS, initialize peripherals including memory/storage etc)

At completion of PBL, functions in SOC ramped & IOs available

Ready to start access to peripheral to continue booting whole system

DRAM
NV Flash

Bootloader

SOC

CPU Core

eSRAM
Registers

MC

Storage
(HDD, eMMC etc)

OS

Kernel

1

2

PBL
MBR

1

2

Equivalent to firmware

ARM Bootloader – Secondary/Extensible BL (SBL/XBL)

After PBL completion → Ready to configure and start up peripherals

DDR initialization → Allocation of DDR regions (Data, MMIO, etc)

Bootstrap begins (i.e. LILO for Linux, GRUB for Unix, BOOTMGR for Win Vista~, etc)

• Start with referring to Master Boot Record (MBR) stored in storage (HDD, SDD, eMMC etc)

• With Reference to MBR, it loads flagged partition to load

– Each partition has information of file type information (NFTS, exFAT, FAT32 or signs of
empty)

• Loading flagged partition data into DDR memory

Then ready to start loading OS kernel

DRAM

NV Flash

Bootloader

SOC

CPU Core

eSRAM
Registers

MC
Segmented

Storage
(HDD, eMMC etc)

MBR(512B)

3

4

Equivalent to UEFI
(Unified Extensible Firmware Interface)
SBL/XBL = link between HW/FW and OS

ARM Bootloader – Kernel Overview

System call: Gate for applications to start approaching to OS/SOC resource

• Applications approach to resource of OS

• SOC vendors give library code (API) to initiate the access to it

Kernel: Core of OS to bridge between App and HW to handle HW resource

Main kernel blocks:

• Process/Task Mgmt; Tasks prioritization/scheduling, Task state handling

• Memory Mgmt; Paging (physical <-> logical address), memory region allocation

• Device Mgmt: Linking applications and target HW (IO, memory, etc)
– Using drivers

HW

Bootloader (PBL/XBL)

OS

Applications

System Call

Kernel Drivers

ARM Bootloader – Little Kernel (LK)

Minimum subset of kernel;

• Always included regardless of OS

• Single task mode (Real Mode) also use

Loaded separately before main kernel and included as part of BL

After LK completion, SOC is ready to do SMP (Protected Mode)

Available in GitHub with source code

Rest parts of Kernel

Little Kernel

Monolithic kernel

15 ~ 20 KB

Vector Table
MMU
Device Tree Table
Timers
Trusted Execution Env (TEE)

Network
Task scheduler
etc

Device Tree - Overview

OS

Kernel

FW & HW

Drivers

OS

Kernel

FW & HW

Driver Device Tree:
CLK, Interrupt control, Memory,
Bus, peripheral, CPU

Without DT With DT

Device Tree: ARM Linux property with data structure info/repository

• Device drivers refer to DT

Issue without DT

• Large portion of kernel source owned by drivers & including unused ones

• No standard driver script format for ARM ➔ Custom effort ➔ No reusability

DT Benefit

• DT created for platform specific➔ Efficient kernel usage

• Reusability to other ARM platform running Linux

Device Tree - Structure

DT is hierarchical structure & there must be correlation

When DT is developed, tree structure is planned

Each DT files (dtb) located under “/proc/device-tree” in Linux directory

• Contents checked with “hexdump” command

Property directed to SOC
(CPU core/GPUetc)

Property directed to IOs

Property directed to
peripheral components

Device Tree – Building into Linux

1. After data structure is planned, develop DT source code (DTS)
• Base source code available from GitHub (linux/arch/arm/boot/dts)

• dts = Board specific & dtsi = SOC specific

2. Through compiler (DTC) ➔ generate binary (DTB)

3. Generated DTB built into bootloader/boot image

4. When system boots, DTB is loaded to kernel
• DTB loaded to specific memory region.

• Base address & offset address for each DTB file is known to kernel

5. While running, driver in kernel refers to DTB for HW specific properties

6. Generated DTB can be still debugged with dump command (last slide)

DTB = DT Blob = binary of DT

1

2

3

4

5

6
4

Master Boot Record (MBR) - Overview

Every storage device has MBR regardless of:

• Boot priority

• Number of partitions in that storage device (even only 1. Max 4 partitions)

MBR main points:

• Hand over to next stage of bootloader

• Tells the location of target OS in its storage device to be booted

• Load its target booted OS into DDR

Boot device
(HDD, USB drive, eMMC, CD/DVD etc)

0 Byte 512 Byte

MBR (Master Boot Record) - Breakdown

Bootstrap code: 446 Byte. Kicking off procedure to look up file from disk and load

• Contents: Assembly code to start BL (440B) + disk signature (4B) + RSVD (2B)

Partition Tables: Total 64 Byte. Each with 16 Byte. Containing information which partition to boot (Boot flag)

• Boot flag (1B): Status of physical drive. Bit 7 needs to be set to be active and bootable

• CHS partition address (3B): Partition start address with CHS (cyclic head sector)

• Partition Type (1B): i.e. FAT16 (0x04), NTFS, exFAT (x07), FAT32 with CHS (0x0B), etc

• CHS partition end address (3B)

• LBA partition start address (4B): With Logical block Address mapped from CHS

• LBA partition end address (4B)

Boot signature: 2 Byte. Validating bootability of this storage

• if 0x55 0xAA → Valid and proceed to boot from this device

• Else → not bootable storage and move to next priority level boot storage

• If no storage has 0x55 0xAA → system cannot boot

Tightly Coupled Memory (TCM)

Cache

• + First search place and makes little latency when target data is hit

• - Effective only when data is used frequently (or replace by other immediately)

• - Unsuitable for real time control which data is often exceptional (not repetitive)

DRAM (or lower hierarchy)

• Too large latency to get data → Not suitable for real time processing

• Critical neck: Always start with referring to page table for address translation

TCM:

• Dedicated region of memory for real time process (interrupt, stack pt, vector, scratch pad etc)

• Using dedicated region of DRAM (physical address only) or (usually) dedicated embedded SRAM

• Can be user defined (size, what data to put) vs cache cannot be user defined

• Usually small size (4kB-256kB) but enough for RT but not for application which prefers larger (cache)

➢ Trade off between size (SRAM size) and cost

CPU Core Cache DRAM

Memory Hierarchy

If missed Δtt
If missed further Δtttt

Δt

TCM
Δt: Level of latency

May access directly

SOC – MPU vs MCU

MCU MPU

Bit 8-32 32, 64

Operating Frequency Few MHz ~ few*100MHz Few*100MHz~Few GHz

Architecture Mainly Pipelines Superscaler

Memory Mainly embedded (i.e TCM) Mainly external (i.e DDR)

Instructions Arithmetic, Logic Arithmetic, Logic + DSP (SIMD), FP

Process Technology Big
(Peripheral, specially analogue cannot progress much)

Small

Price Low High

Target Usage Small size, Low power, control Higher performance applications
(more complex than control)

MPU (Equivalent to CPU)
• Mainly ALU, cache, registers and IOs
• Need peripheral devices to complete whole system

MCU
• Integration of MPU and peripherals in a package
• Feeding power to its unit makes whole system work

